बैजीक राशीवरील महत्वाची सूत्रे
बैजीक राशीवरील महत्वाची सूत्रे
- a×a = a2
- (a×b) + (a×c) = a (a+c)
- a × b + b= (a+1) × b
- (a+b)2 = a2 + 2ab + b2
- (a-b)2 = a2 + 2ab + b2
- a2-b2 = (a+b) (a-b)
:: a2-b2 / a+b = a-b a2-b2/a-b = a+b
:: (a+b)3 / (a+b)2 = a+b (a+b)3 / (a-b) = (a+b)2
:: (a-b)3 / (a+b)2 = (a-b) (a-b)3 / (a-b) = (a+b)2 - a3 – b3 = (a-b) (a2 + ab+ b2)
- a × a × a = a3
- (a×b) – (a×c) = a (b-c)
- a × b- b = (a-1) × b ;
:: a2 + 2ab + b2 / a+b = (a+b)
:: a2 – 2ab + b2 / a-b = (a-b) - (a+b)3 = a3 + 3a2b + 3ab2 + b3
- (a-b)3 = a3 – 3a2b + 3ab2 + b3
- a3 + b3 = (a+b) (a2-ab+b2)
:: a3+b3 / a2-ab+b2 = (a-b)
(a×b) + (a×c) = a (a+c)
(a×b) + (a×c) = a (b+c)
्