बैजीक राशीवरील महत्वाची सूत्रे

बैजीक राशीवरील महत्वाची सूत्रे

Must Read (नक्की वाचा):

गणितातील महत्वाची सूत्रे

 

  •  a×a = a2
  •  (a×b) + (a×c) = a (a+c)
  •  a × b + b= (a+1) × b
  •  (a+b)2 = a2 + 2ab + b2
  •  (a-b)2 = a2 + 2ab + b2
  • a2-b2 = (a+b) (a-b)
    :: a2-b2 / a+b = a-b a2-b2/a-b = a+b
    :: (a+b)3 / (a+b)2 = a+b (a+b)3 / (a-b) = (a+b)2
    :: (a-b)3 / (a+b)2 = (a-b) (a-b)3 / (a-b) = (a+b)2
  •  a3 – b3 = (a-b) (a2 + ab+ b2)
  •  a × a × a = a3
  •  (a×b) – (a×c) = a (b-c)
  • a × b- b = (a-1) × b ;
    :: a2 + 2ab + b2 / a+b = (a+b)
    :: a2 – 2ab + b2 / a-b = (a-b)
  •  (a+b)3 = a3 + 3a2b + 3ab2 + b3
  • (a-b)3 = a3 – 3a2b + 3ab2 + b3
  •  a3 + b3 = (a+b) (a2-ab+b2)
    :: a3+b3 / a2-ab+b2 = (a-b)
Must Read (नक्की वाचा):

ल.सा.वी आणि म.सा.वी

You might also like
2 Comments
  1. sameer says

    (a×b) + (a×c) = a (a+c)
    (a×b) + (a×c) = a (b+c)

    1. My name kartik says

Leave A Reply

Your email address will not be published.